

UDC 616.33-007.271-089.87:355.23

DOI: <https://doi.org/10.22141/2308-2097.59.2.2025.671>

O.M. Babii , B.F. Shevchenko , N.V. Prolom , A.M. Halinska , O.O. Halinskyi
Institute of Gastroenterology of NAMSU, Dnipro, Ukraine

Impaired esophagogastric motor function as a predictor for development of hiatal hernia in military personnel

For citation: Gastroenterologіa. 2025;59(2):85-89. doi: 10.22141/2308-2097.59.2.2025.671

Abstract. **Background.** Disorders of esophagogastric motility, often associated with the development of hiatal hernia (HH), represent a common pathological condition. The characteristics of these functional changes may vary depending on lifestyle factors, levels of physical activity, and adaptive mechanisms, which differ between military personnel and civilians. Evaluation of such differences is essential for the development of individualized approaches to the diagnosis and treatment of HH. The purpose was to identify esophagogastric motility disorders as predictors of hiatal hernia development in military personnel by analyzing parameters obtained through digital pneumoballoon manometry. **Materials and methods.** Digital pneumoballoon manometry of the esophagus and stomach was performed in 66 patients with hiatal hernia (30 military personnel and 36 civilians, serving as the comparison group). The analysis included assessment of the amplitude and duration of peristaltic waves, rhythmic fluctuations of the esophageal wall, and pressure in the areas of the lower esophageal sphincter and pyloroduodenal sphincter. **Results.** The amplitude of the peristaltic wave in military personnel was 1.9 times higher than in civilians, whereas the wave duration in civilians was 40.5 % longer ($p < 0.05$). Rhythmic oscillations of the esophageal wall were less pronounced in civilians, suggesting more significant motility disorders. Pressure in the lower esophageal sphincter region was reduced by 50.7 % in military personnel ($p < 0.05$) and by 53.7 % in civilians ($p < 0.01$) compared to control values, contributing to the development of gastroesophageal reflux. Pressure in the pyloroduodenal sphincter region increased 2.2-fold in military personnel and 2.8-fold in civilians ($p < 0.05$). **Conclusions.** Assessment of esophagogastric motility using digital pneumoballoon manometry enables the identification of predictors of HH development in military personnel. The results underscore the need for a personalized approach to the treatment of hiatal hernia.

Keywords: hiatal hernia predictors; esophagogastric motility; lower esophageal sphincter pressure; pyloroduodenal sphincter pressure; functional diagnosis

Introduction

Disorders of esophagogastric motility are commonly associated with the development of gastroesophageal reflux disease and hiatal hernia (HH) [1, 2]. These conditions significantly influence the quality of life of patients by causing dyspeptic symptoms, reflux esophagitis, and complications affecting the upper gastrointestinal tract [3].

One of the key factors that impact the severity of esophagogastric motility dysfunction in patients with HH is lifestyle, including the level of physical activity. Military personnel, due to the demands of service, are subjected to considerable physical and psychological stress, which may contribute to the onset or progression of these dis-

orders [4]. In civilian patients, risk factors may include a sedentary lifestyle, excess body weight, and associated metabolic disturbances. The role of esophagogastric motility disorders in the development of HH remains a subject of active scientific investigation. It has been established that dysfunction of the lower esophageal sphincter (LES), alterations in esophageal peristalsis, and increased pressure in the pyloroduodenal sphincter region may play a significant role in the pathogenesis of this condition [5]. However, the early predictors of these changes in patients with varying levels of physical activity and adaptive capacity, particularly among military personnel, remain not fully understood.

© 2025. The Authors. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License, CC BY, which allows others to freely distribute the published article, with the obligatory reference to the authors of original works and original publication in this journal.

Для кореспонденції: Галінська Анастасія Миколаївна, науковий співробітник, науково-дослідний сектор, ДУ «Інститут гастроентерології НАМН України», просп. Слобожанський, 96, м. Дніпро, 49074, Україна; e-mail: biolog.anastasia@gmail.com; тел.: +380 (98) 212-93-33

For correspondence: Anastasiia Halinska, Research Fellow, Research Sector, Institute of Gastroenterology of NAMSU, Slobozhanskyi ave., 96, Dnipro, 49074, Ukraine; e-mail: biolog.anastasia@gmail.com;

phone: +380 (98) 212-93-33

Full list of authors' information is available at the end of the article.

In modern gastroenterology, manometry using multi-channel catheters is recognized as the “gold standard” for detecting early esophageal motility disorders [6]. Nevertheless, high-resolution manometry remains largely inaccessible in some countries. For example, researchers have highlighted the need to improve access to this technique in Japan [7, 8], where barium esophagography — with a reported sensitivity of 94 % — serves as an alternative diagnostic approach [9]. Additionally, the Chicago Classification v3.0 offers a structured framework for distinguishing between “major” and “minor” esophageal motility disorders [10, 11].

The pneumoballoon manometry method shows promise for long-term monitoring of motor activity in the esophagus, stomach, and duodenum. It enables the assessment of frequency, amplitude, and nature of smooth muscle contractions in the walls of the esophagus, stomach, and duodenum, which are responsible for peristalsis and food transit. In this context, the use of functional provocation tests such as peristalsis stimulation through fractional water swallowing is considered a promising diagnostic approach [5, 12]. Modern combined techniques, such as manometry integrated with pH-metry and impedance measurement, significantly enhance diagnostic capabilities, particularly in evaluating both acid and non-acid reflux.

Gastrointestinal motor function is essential for normal digestion, facilitating the mixing of food with digestive enzymes and its propulsion through the gastrointestinal tract. Disruptions in esophagogastric motility may lead to the development of erosive or non-erosive reflux esophagitis, peptic ulcer disease, and other pathologies. In cases of esophagogastric disorders, manometry provides valuable data on peristaltic activity, LES function, and pyloroduodenal sphincter performance [13–15].

The relevance of this study lies in the need to identify early predictors of esophagogastric motility disorders in military personnel and civilians with hiatal hernia. Digital pneumoballoon manometry offers objective data on the predictors of motility dysfunction and supports a personalized approach to managing this condition.

The purpose was to identify esophagogastric motility disorders as predictors of hiatal hernia development in military personnel by analyzing parameters obtained through digital pneumoballoon manometry.

Materials and methods

To assess esophagogastric motility, intraluminal pressure was recorded using a pneumatic balloon affixed to the tip of a probe. A Microtech Stone Extraction Balloon SRB-T-9/12/15-20 endoscopic probe was utilized, connected to a pressure sensor and an insufflation syringe. Following system calibration within the range of 0–500 mmHg, the pneumatic balloon was introduced endoscopically and advanced through the esophagus; peak pressure values were recorded at each anatomical segment. Data were digitally recorded, and pressure values were calculated as the difference between peak pressure within the region of interest and baseline pressure in adjacent segments. Data visualization and processing were performed using MS Excel, including the calculation of pressure in the pyloroduodenal region, LES, as well as the period and amplitude of pressure fluctuations in the balloon when positioned in the esophagus.

The study was conducted in the Department of Digestive Surgery at the State Institution “Institute of Gastroenterology of the National Academy of Medical Sciences of Ukraine” in 2023–2024. It involved 9 healthy volunteers without esophagogastric pathology (control group) and 66 patients with hiatal hernia (ICD-10 code K44.9), who were divided into two groups: group I (n = 30) — military personnel, further divided by two types of HH: type I (axial, n = 11) and type II (paraesophageal, n = 19); group II (n = 36) — civilians (comparison group), also categorized into type I (axial, n = 22) and type II (paraesophageal, n = 14).

The cohort included 49 men (74.2 %) and 17 women (25.8 %). The age of the patients ranged from 31 to 63 years. The mean age was (47.13 ± 2.81) years overall, with military personnel averaging (41.57 ± 3.84) years and civilians (58.73 ± 2.68) years ($p > 0.05$).

Statistical analysis included descriptive statistics and parametric methods (Student's t-test) for normally distributed variables, as confirmed by the Shapiro-Wilk test. Differences were considered statistically significant at $p < 0.05$. Data are presented as mean \pm standard error ($M \pm m$), with minimum and maximum values indicated.

Results

Analysis of digital pneumoballoon manometry in patients with hiatal hernia revealed significant alterations in esophagogastric motility.

Among military personnel with type I HH, the mean pressure in the pyloroduodenal sphincter region was (39.94 ± 14.03) mmHg, which was significantly higher than in the control group ((17.15 ± 6.60) mmHg). In patients with type II HH, the pressure was comparable ((39.77 ± 8.07) mmHg, $p < 0.05$). The frequency of pyloroduodenal sphincter hypertonicity in military personnel was 50.0 % in type I HH and 75.0 % in type II HH.

The LES pressure was significantly decreased in military personnel with both types of HH. In type I HH, it averaged (9.18 ± 4.59) mmHg, while in type II HH, it was (5.67 ± 1.75) mmHg representing a 59 % reduction compared to the control group ($p < 0.01$).

Esophageal peristaltic activity varied significantly between the two HH types. In military personnel with type I HH, the amplitude of the peristaltic wave was 5.5 times higher than in the control group ((83.09 ± 4.15) mmHg, $p < 0.001$), while in those with type II HH, it was 2.9 times higher ((43.84 ± 9.31) mmHg, $p < 0.05$). Additionally, the amplitude of the peristaltic wave in type I HH was 90 % higher compared to type II HH ($p < 0.05$).

Analysis of rhythmic esophageal wall oscillations showed variability in amplitude depending on HH type: (5.51 ± 2.82) mmHg in type I HH and (13.17 ± 4.78) mmHg in type II HH. The periodicity of these oscillations also varied significantly, reaching (4.62 ± 0.92) seconds in type II HH, which exceeded the normal values observed in the control group ((2.99 ± 0.13) seconds) (Table 1).

Among civilians with type I HH, the mean pressure in the pyloroduodenal sphincter region was (45.47 ± 8.14) mmHg, which was 2.6 times higher than the control value ((17.15 ± 6.60) mmHg, $p < 0.05$). In civilians with type II HH, this parameter reached (53.47 ± 11.84) mmHg, excee-

Table 1 — Characteristics of digital pneumoballoon manometry in assessing esophagogastric motility in military personnel with hiatal hernia, $M \pm m$ (min; max)

Parameter	Control (n = 9)	Military personnel with HH	
		Type I (n = 11)	Type II (n = 19)
Pyloroduodenal sphincter pressure, mmHg	17.15 ± 6.60 (0.75; 49.14)	39.94 ± 14.03 (1.17; 95.50)	39.77 ± 8.07 (3.88; 131.71)*
Lower esophageal sphincter pressure, mmHg	13.70 ± 0.48 (13.36; 14.04)	9.18 ± 4.59 (0.01; 36.13)	5.67 ± 1.75 (0.18; 26.06)**
Esophageal peristaltic wave	Amplitude, mmHg	15.21 ± 10.26 (3.63; 41.33)	83.09 ± 4.15 (83.09; 83.09)***
	Duration, s	12.67 ± 1.51 (7.50; 15.00)	11.00 ± 0.55 (11.00; 11.00)
Rhythmic esophageal wall oscillations	Amplitude, mmHg	9.67 ± 4.12 (4.81; 16.13)	5.51 ± 2.82 (1.62; 15.26)
	Periodicity, s	2.99 ± 0.13 (2.80; 3.17)	2.77 ± 0.49 (1.09; 3.67)

Notes: * — $p < 0.05$, statistically significant difference between military personnel and the control group; ** — $p < 0.01$, statistically significant difference between military personnel and the control group; *** — $p < 0.001$, statistically significant difference between military personnel and the control group; # — statistically significant compared to the values in type I hiatal hernia, at a significance level of $p < 0.05$.

ding the control value by 3.1 times ($p < 0.05$). The frequency of pyloroduodenal sphincter hypertonicity among civilians was 68.4 % in type I HH and 83.3 % in type II HH.

The LES pressure was significantly reduced in civilians. In type I HH, it was (6.37 ± 1.53) mmHg, which is 53.5 % lower than in the control group ($p < 0.01$), and in type II HH, it was (6.28 ± 2.24) mmHg, a 54.1 % reduction compared to the controls ($p < 0.05$).

Esophageal peristaltic activity in civilians with compromised functional competence of the gastroesophageal junction (GEJ) also showed alterations. The amplitude of the peristaltic wave in type I HH was (21.44 ± 5.32) mmHg, while in type II HH, it was (27.23 ± 5.69) mmHg, indicating lower values compared to military personnel.

The peristaltic wave duration in civilians with type I HH was significantly prolonged ((22.48 ± 4.51) seconds, $p < 0.05$), whereas in type II HH, it was (15.53 ± 2.20) seconds ($p > 0.05$), indicating a reduction in peristaltic efficiency.

Analysis of rhythmic oscillations of the esophageal wall did not reveal significant differences between HH types. The amplitude of oscillations in type I HH was (7.68 ± 1.81) mmHg, while in type II HH, it was (9.14 ± 6.09) mmHg ($p < 0.05$). The periodicity of oscillations was higher in civilians with type I HH ((4.31 ± 0.68) seconds) compared to those with type II HH ((3.70 ± 0.52) seconds) (Table 2).

Discussion

The obtained results indicate significant alterations in esophagogastric motility in patients with HH.

The observed increase in pyloroduodenal sphincter pressure in military personnel with HH, regardless of its type, suggests the development of sphincter hypertonicity, which may contribute to delayed gastric emptying [8].

The reduction in the LES pressure in military personnel with type I and II HH by 33.0 and 58.6 %, respectively ($p < 0.01$), confirms functional insufficiency of the LES, which serves as a pathogenic factor in the development of

Table 2 — Characteristics of digital pneumoballoon manometry in assessing esophagogastric motility in civilians with hiatal hernia, $M \pm m$ (min; max)

Parameter	Control (n = 9)	Civilians with HH and GEJ dysfunction	
		Type I (n = 22)	Type II (n = 14)
Pyloroduodenal sphincter pressure, mmHg	17.15 ± 6.60 (0.75; 49.14)	45.47 ± 8.14 (0.62; 140.67)*	53.47 ± 11.84 (0.99; 144.22)*
Lower esophageal sphincter pressure, mmHg	13.70 ± 0.48 (13.36; 14.04)	6.37 ± 1.53 (0.36; 21.48)**	6.28 ± 2.24 (0.23; 21.68)*
Esophageal peristaltic wave	Amplitude, mmHg	15.21 ± 10.26 (3.63; 41.33)	21.44 ± 5.32 (5.50; 53.96)
	Periodicity, s	12.67 ± 1.51 (7.50; 15.00)	22.48 ± 4.51 (13.50; 50.17)*
Rhythmic esophageal wall oscillations	Amplitude, mmHg	9.67 ± 4.12 (4.81; 16.13)	7.68 ± 1.81 (2.89; 25.13)
	Periodicity, s	2.99 ± 0.13 (2.80; 3.17)	4.31 ± 0.68 (2.50; 9.33)

Notes: * — $p < 0.05$, statistically significant difference between civilians and the control group; ** — $p < 0.01$, statistically significant difference between civilians and the control group.

gastroesophageal reflux. This reduction was particularly pronounced in military personnel with type II HH, indicating more severe sphincter dysfunction.

When analyzing peristaltic parameters, it is noteworthy that military personnel with type I HH exhibited esophageal motor hyperactivity, as evidenced by a significant increase in the amplitude of the peristaltic wave. In contrast, military personnel with type II HH demonstrated a lower amplitude, which may indicate compensatory exhaustion of the esophageal muscular layer or impaired neural regulation.

The observed differences in rhythmic oscillation parameters of the esophageal wall between military and civilian groups can be attributed to varying degrees of compensatory response. Higher amplitude and periodicity values observed in type II HH may reflect compensatory hyperactivity of the smooth muscle elements in response to reflux exposure.

Thus, the study results demonstrate significant alterations in esophagogastric motility among patients with HH, highlighting the necessity for a differentiated therapeutic approach based on hernia type. Further research should focus on evaluating the effectiveness of therapeutic strategies aimed at correcting the identified motility disorders.

The findings also indicate that civilians with hiatal hernia exhibited pronounced esophagogastric motility disturbances. Pyloroduodenal sphincter hypertonicity was diagnosed more frequently in the civilian group (61.2 %) compared to military personnel (53.8 %), suggesting more pronounced impairment of motor regulation in civilians.

Both civilians (53.7 %, $p < 0.01$) and military personnel (50.7 %, $p < 0.05$) demonstrated a significant decrease in the LES pressure compared to the control group, confirming sphincter insufficiency and a predisposition to gastroesophageal reflux in both type I and II hiatal hernia.

Esophageal peristaltic activity in civilians was found to be less pronounced than in military personnel. Specifically, the amplitude of the peristaltic wave in civilians was 49.6 % lower compared to military subjects ($p < 0.05$). At the same time, the duration of the peristaltic wave in civilians with HH was significantly prolonged, by 50.5 % compared to the control group ($p < 0.05$), indicating reduced effectiveness of peristaltic contractions. Rhythmic oscillations of the esophageal wall in civilians showed a tendency toward increased periodicity in type I HH, possibly reflecting compensatory mechanisms of motor function in response to the LES insufficiency.

Thus, the obtained results indicate more pronounced esophagogastric motility dysfunction in civilians with hiatal hernia compared to military personnel. These differences may be attributed both to the underlying pathophysiological mechanisms of the disease and to variations in adaptive responses to pathological changes.

Conclusions

1. In military personnel with type I and II HH, the mean pressure in the pyloroduodenal sphincter region was increased by 2.3 times ($p < 0.05$) in both types compared to the control group, indicating the development of sphincter hypertonicity. The LES pressure decreased by 50.7 % ($p < 0.05$) in military personnel and by 53.7 % ($p < 0.01$)

in civilians, confirming the LES insufficiency and an increased risk of gastroesophageal reflux. The amplitude of the esophageal peristaltic wave in military personnel with type I HH was 5.5 times higher than in the control group. In civilians, the peristaltic wave amplitude was 49.6 % lower compared to military personnel ($p < 0.05$), which may indicate the presence of compensatory mechanisms in the military group.

2. The duration of the peristaltic wave in civilian patients with HH was 67.9 % longer than in military personnel ($p < 0.05$), indicating delayed bolus transit. Rhythmic oscillations of the esophageal wall in military personnel were characterized by lower amplitude, but higher periodicity compared to civilians, which may reflect an adaptive response to pathological changes.

3. Esophagogastric motility disorders were more pronounced in civilian patients compared to military personnel, which may be attributed to differences in lifestyle, adaptive mechanisms, and levels of physical activity.

The obtained data may serve as potential predictors for the early diagnosis of hiatal hernia in military personnel.

References

1. Tack J, Pandolfino JE. *Pathophysiology of Gastroesophageal Reflux Disease*. *Gastroenterology*. 2018 Jan;154(2):277-288. doi: 10.1053/j.gastro.2017.09.047.
2. Fuchs KH, Meining A. *Current Insights in the Pathophysiology of Gastroesophageal Reflux Disease*. *Chirurgia (Bucur)*. 2021 Oct;116(5):515-523. doi: 10.21614/chirurgia.
3. Conrado LM, Gurski RR, da Rosa AR, Simic AP, Callegari-Jacques SM. *Is there an association between hiatal hernia and ineffective esophageal motility in patients with gastroesophageal reflux disease?* *J Gastrointest Surg*. 2011 Oct;15(10):1756-1761. doi: 10.1007/s11605-011-1619-2.
4. Stegerhoek P, Kooijman K, Ziesemer K, IJzerman H, Kuijer PPFM, Verhagen E. *Risk factors for adverse health in military and law enforcement personnel; an umbrella review*. *BMC Public Health*. 2024 Nov 13;24(1):3151. doi: 10.1186/s12889-024-20553-2.
5. Shevchenko BF, Prolom NV, Babii OM, Zeleniuk OV, Tarabarov SO, Galinsky OO. *Diagnosis and surgical correction of insufficiency of physiological cardia in hiatal hernia*. *Gastroenterology*. 2022 May;56(1):48-53. Ukrainian. doi: 10.22141/2308-2097.56.1.2022.487.
6. Kayali S, Calabrese F, Pasta A, et al. *Effect of hiatal hernia and esophagogastric junction morphology on esophageal motility: Evidence from high-resolution manometry studies*. *Neurogastroenterol Motil*. 2024 Dec;36(12):e14929. doi: 10.1111/nmo.14929.
7. Hoshino M, Omura N, Yano F, et al. *Is esophageal manometry essential for the diagnosis of achalasia? Identifying patients with achalasia by the esophageal clearance method*. *Esophagus*. 2021 Jan;18(1):163-168. doi: 10.1007/s10388-020-00756-3.
8. Fox MR, Kahrilas PJ, Roman S, et al.; *International Working Group for Disorders of Gastrointestinal Motility and Function*. *Clinical measurement of gastrointestinal motility and function: who, when and which test?* *Nat Rev Gastroenterol Hepatol*. 2018 Sep;15(9):568-579. doi: 10.1038/s41575-018-0030-9.
9. Akaishi T, Nakano T, Machida T, et al. *Clinical Usefulness of Endoscopy, Barium Fluoroscopy, and Chest Computed Tomography for the Correct Diagnosis of Achalasia*. *Intern Med*. 2020 Feb 1;59(3):323-

328. doi: 10.2169/internalmedicine.3612-19.

10. Kahrilas PJ, Bredenoord AJ, Fox M, et al.; International High Resolution Manometry Working Group. The Chicago Classification of esophageal motility disorders, v3.0. *Neurogastroenterol Motil*. 2015 Feb;27(2):160-174. doi: 10.1111/nmo.12477.

11. Kahrilas PJ, Ghosh SK, Pandolfino JE. Esophageal motility disorders in terms of pressure topography: the Chicago Classification. *J Clin Gastroenterol*. 2008 May-Jun;42(5):627-635. doi: 10.1097/MCG.0b013e31815ea291.

12. Desipio J, Friedenberg FK, Korimilli A, Richter JE, Parkman HP, Fisher RS. High-resolution solid-state manometry of the antropyloroduodenal region. *Neurogastroenterol Motil*. 2007 Mar;19(3):188-195. doi: 10.1111/j.1365-2982.2006.00866.x.

13. Siegal SR, Dolan JP, Hunter JG. Modern diagno-

sis and treatment of hiatal hernias. *Langenbecks Arch Surg*. 2017 Dec;402(8):1145-1151. doi: 10.1007/s00423-017-1606-5.

14. Van Hoeij FB, Smout AJ, Bredenoord AJ. Predictive value of routine esophageal high-resolution manometry for gastro-esophageal reflux disease. *Neurogastroenterol Motil*. 2015 Jul;27(7):963-970. doi: 10.1111/nmo.12570.

15. Severynovska OV, Galinskij OO, Rudenko AI, Mursin OB, Babicheva VV, Skubytska LD. Features of the gastric periodic activity in conditions of NO-ergic system disbalance. *Regul Mech Biosyst*. 2014 Apr;5(1):71-78. Ukrainian. doi: 10.15421/021415.

Received 01.04.2025

Revised 12.04.2025

Accepted 21.04.2025

Information about authors

Oleksandr Babii, MD, DSc, PhD, Chief Researcher, Head of the Digestive Surgery Department, Institute of Gastroenterology of NAMSU, Dnipro, Ukraine; e-mail: alexbabiy7@gmail.com, aleksandr_babiy@ukr.net; phone: +380 (67) 902-00-42; <https://orcid.org/0000-0001-7482-684X>

Borys Shevchenko, MD, DSc, PhD, Professor, Chief Researcher, Digestive Surgery Department, Institute of Gastroenterology of NAMSU, Dnipro, Ukraine; e-mail: shebef1945@gmail.com; phone: +380 (50) 362-95-95; <https://orcid.org/0000-0001-9253-4883>

Natalia Prolom, MD, DSc, PhD, Senior Research Fellow, Head of the Department of Mini-Invasive Endoscopic Interventions and Instrumental Diagnosis, Institute of Gastroenterology of NAMSU, Dnipro, Ukraine; e-mail: prolom1978@gmail.com; phone: +380 (67) 284-11-07; <https://orcid.org/0000-0001-8134-8735>

Anastasiia Halinska, Research Fellow, Research Sector, Institute of Gastroenterology of NAMSU, Dnipro, Ukraine; e-mail: biolog.anastasia@gmail.com; phone: +380 (98) 212-93-33; <https://orcid.org/0000-0003-4345-7185>

Oleksii Halinskyi, Research Fellow, Research Sector, Institute of Gastroenterology of NAMSU, Dnipro, Ukraine; e-mail: alexejgalinskij@gmail.com; phone: +380 (67) 567-67-56; <https://orcid.org/0000-0002-6754-0023>

Conflicts of interests. Authors declare the absence of any conflicts of interests and own financial interest that might be construed to influence the results or interpretation of the manuscript.

Information about funding. This work was carried out as part of a research project (state registration No. 0119U102471). All patients provided written informed consent to participate in the study.

Authors' contribution. O.M. Babii — study design, data analysis, critical revision of the manuscript; B.F. Shevchenko — manuscript editing; A.M. Halinska — manuscript writing and formatting, data analysis, primary statistical processing; O.O. Halinskyi — performance of manometric examinations, statistical analysis; N.V. Prolom — endoscopic guidance during balloon procedures.

Бабій О.М., Шевченко Б.Ф., Пролом Н.В., Галінська А.М., Галінський О.О.
ДУ «Інститут гастроентерології НАМН України», м. Дніпро, Україна

Порушення стравохідно-шлункової моторної функції як предиктор розвитку грижі стравохідного отвору діафрагми у військовослужбовців

Резюме. **Актуальність.** Порушення стравохідно-шлункової моторної функції, яка супроводжується розвитком грижі стравохідного отвору діафрагми (ГСОД), є поширеною патологією. Ці зміни можуть залежати від способу життя, рівня фізичного навантаження й адаптаційних механізмів, що відрізняються у військовослужбовців і цивільних. Оцінка таких відмінностей є важливою для розробки індивідуалізованих підходів до діагностики та лікування ГСОД. **Мета:** визначити порушення стравохідно-шлункової моторної функції як предиктора розвитку ГСОД у військовослужбовців шляхом аналізу показників цифрової пневмобалонної манометрії. **Матеріали та методи.** Проведено цифрову пневмобалонну манометрію стравоходу і шлунка в 66 пацієнтів із ГСОД (30 військовослужбовців і 36 цивільних (група порівняння)). Проаналізовано амплітуди й період перистальтичної хвилі, ритмічні коливання стінки стравоходу, тиск у зоні нижнього стравохідного сфинктера та пілородуоденального сфинктера. **Результатами.** Амплітуда перистальтичної хвилі у військовослужбовців була в 1,9 раза

вищою, ніж у цивільних, але період хвилі в цивільних був на 40,5 % довшим ($p < 0,05$). Ритмічні коливання стінки стравоходу в цивільних були менш вираженими, що може свідчити про більш значні порушення моторики. Тиск у зоні нижнього стравохідного сфинктера був знижений на 50,7 % у військових ($p < 0,05$) та на 53,7 % у цивільних ($p < 0,01$) порівняно з контролем, що призводило до розвитку гастроезофагального рефлюксу. Тиск у зоні пілородуоденального сфинктера був підвищений відповідно у 2,2 і 2,8 раза у військовослужбовців та цивільних ($p < 0,05$). **Висновки.** Оцінка стравохідно-шлункової моторної функції за допомогою цифрової пневмобалонної манометрії дозволяє встановити предиктори розвитку ГСОД у військовослужбовців. Отримані результати вказують на необхідність персоналізованого підходу до лікування ГСОД.

Ключові слова: предиктори грижі стравохідного отвору діафрагми; стравохідно-шлункова моторна функція; тиск у зоні нижнього стравохідного сфинктера; тиск у зоні пілородуоденального сфинктера; функціональні дослідження